54 research outputs found

    Visual Similarity Perception of Directed Acyclic Graphs: A Study on Influencing Factors

    Full text link
    While visual comparison of directed acyclic graphs (DAGs) is commonly encountered in various disciplines (e.g., finance, biology), knowledge about humans' perception of graph similarity is currently quite limited. By graph similarity perception we mean how humans perceive commonalities and differences in graphs and herewith come to a similarity judgment. As a step toward filling this gap the study reported in this paper strives to identify factors which influence the similarity perception of DAGs. In particular, we conducted a card-sorting study employing a qualitative and quantitative analysis approach to identify 1) groups of DAGs that are perceived as similar by the participants and 2) the reasons behind their choice of groups. Our results suggest that similarity is mainly influenced by the number of levels, the number of nodes on a level, and the overall shape of the graph.Comment: Graph Drawing 2017 - arXiv Version; Keywords: Graphs, Perception, Similarity, Comparison, Visualizatio

    Convexity-Increasing Morphs of Planar Graphs

    Full text link
    We study the problem of convexifying drawings of planar graphs. Given any planar straight-line drawing of an internally 3-connected graph, we show how to morph the drawing to one with strictly convex faces while maintaining planarity at all times. Our morph is convexity-increasing, meaning that once an angle is convex, it remains convex. We give an efficient algorithm that constructs such a morph as a composition of a linear number of steps where each step either moves vertices along horizontal lines or moves vertices along vertical lines. Moreover, we show that a linear number of steps is worst-case optimal. To obtain our result, we use a well-known technique by Hong and Nagamochi for finding redrawings with convex faces while preserving y-coordinates. Using a variant of Tutte's graph drawing algorithm, we obtain a new proof of Hong and Nagamochi's result which comes with a better running time. This is of independent interest, as Hong and Nagamochi's technique serves as a building block in existing morphing algorithms.Comment: Preliminary version in Proc. WG 201

    A Symmetry Metric for Graphs and Line Diagrams

    Get PDF
    Symmetry is often considered a desirable feature of diagrams. However, quantifying the exact amount of symmetry present is often difficult. We propose a novel symmetry metric that can score the amount of rotational, translational, and reflective symmetry present in a graph or line diagram

    GiViP: A Visual Profiler for Distributed Graph Processing Systems

    Full text link
    Analyzing large-scale graphs provides valuable insights in different application scenarios. While many graph processing systems working on top of distributed infrastructures have been proposed to deal with big graphs, the tasks of profiling and debugging their massive computations remain time consuming and error-prone. This paper presents GiViP, a visual profiler for distributed graph processing systems based on a Pregel-like computation model. GiViP captures the huge amount of messages exchanged throughout a computation and provides an interactive user interface for the visual analysis of the collected data. We show how to take advantage of GiViP to detect anomalies related to the computation and to the infrastructure, such as slow computing units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Perception of Symmetries in Drawings of Graphs

    Full text link
    Symmetry is an important factor in human perception in general, as well as in the visualization of graphs in particular. There are three main types of symmetry: reflective, translational, and rotational. We report the results of a human subjects experiment to determine what types of symmetries are more salient in drawings of graphs. We found statistically significant evidence that vertical reflective symmetry is the most dominant (when selecting among vertical reflective, horizontal reflective, and translational). We also found statistically significant evidence that rotational symmetry is affected by the number of radial axes (the more, the better), with a notable exception at four axes.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    Planar Drawings of Fixed-Mobile Bigraphs

    Full text link
    A fixed-mobile bigraph G is a bipartite graph such that the vertices of one partition set are given with fixed positions in the plane and the mobile vertices of the other part, together with the edges, must be added to the drawing. We assume that G is planar and study the problem of finding, for a given k >= 0, a planar poly-line drawing of G with at most k bends per edge. In the most general case, we show NP-hardness. For k=0 and under additional constraints on the positions of the fixed or mobile vertices, we either prove that the problem is polynomial-time solvable or prove that it belongs to NP. Finally, we present a polynomial-time testing algorithm for a certain type of "layered" 1-bend drawings

    Evaluation of two interaction techniques for visualization of dynamic graphs

    Full text link
    Several techniques for visualization of dynamic graphs are based on different spatial arrangements of a temporal sequence of node-link diagrams. Many studies in the literature have investigated the importance of maintaining the user's mental map across this temporal sequence, but usually each layout is considered as a static graph drawing and the effect of user interaction is disregarded. We conducted a task-based controlled experiment to assess the effectiveness of two basic interaction techniques: the adjustment of the layout stability and the highlighting of adjacent nodes and edges. We found that generally both interaction techniques increase accuracy, sometimes at the cost of longer completion times, and that the highlighting outclasses the stability adjustment for many tasks except the most complex ones.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    The Perception of Clutter in Linear Diagrams

    Get PDF

    Revisited experimental comparison of node-link and matrix representations

    Get PDF
    Visualizing network data is applicable in domains such as biology, engineering, and social sciences. We report the results of a study comparing the effectiveness of the two primary techniques for showing network data: node-link diagrams and adjacency matrices. Specifically, an evaluation with a large number of online participants revealed statistically significant differences between the two visualizations. Our work adds to existing research in several ways. First, we explore a broad spectrum of network tasks, many of which had not been previously evaluated. Second, our study uses a large dataset, typical of many real-life networks not explored by previous studies. Third, we leverage crowdsourcing to evaluate many tasks with many participants

    Visual Causality: Investigating Graph Layouts for Understanding Causal Processes

    Get PDF
    Causal diagrams provide a graphical formalism indicating how statistical models can be used to study causal processes. Despite the extensive research on the efficacy of aesthetic graphic layouts, the causal inference domain has not benefited from the results of this research. In this paper, we investigate the performance of graph visualisations for supporting users’ understanding of causal graphs. Two studies were conducted to compare graph visualisations for understanding causation and identifying confounding variables in a causal graph. The first study results suggest that while adjacency matrix layouts are better for understanding direct causation, node-link diagrams are better for understanding mediated causation along causal paths. The second study revealed that node-link layouts, and in particular layouts created by a radial algorithm, are more effective for identifying confounder and collider variables
    corecore